On Generalization of Cebysev Type Inequalities

نویسندگان

  • Aziz Saglam
  • Huseyin Yildirim
  • Mehmat Zeki Sarikaya
چکیده مقاله:

In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Hardy-type Inequalities

This paper is devoted to some new generalization of Hardy-type integral inequalities and the reversed forms. The study is to determine conditions on which the generalized inequalities hold using some known hypothesis. Improvement of some inequalities are also presented.

متن کامل

Inequalities Based on a Generalization of Concavity

The concept of concavity is generalized to functions, y, satisfying nth order differential inequalities, (−1)n−ky(n)(t) ≥ 0, 0 ≤ t ≤ 1, and homogeneous two-point boundary conditions, y(0) = . . . = y(k−1)(0) = 0, y(1) = . . . = y(n−k−1)(1) = 0, for some k ∈ {1, . . . , n− 1}. A piecewise polynomial, which bounds the function, y, below, is constructed, and then is employed to obtain that y(t) ≥ ...

متن کامل

New Generalization of Perturbed Ostrowski Type Inequalities and Applications

X iv :0 70 5. 35 56 v1 [ m at h. FA ] 2 4 M ay 2 00 7 New Generalization of Perturbed Ostrowski Type Inequalities and Applications Wen-jun Liu, Qiao-ling Xue, Jian-wei Dong Abstract: Generalizations of Ostrowski type inequality for functions of Lipschitzian type are established. Applications in numerical integration and cumulative distribution functions are also given.

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره None

صفحات  41- 48

تاریخ انتشار 2010-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023